Subdomain - based flux - free a posteriori error estimators ⋆ Núria PARÉS , Pedro DÍEZ and Antonio HUERTA ∗

نویسندگان

  • Núria PARÉS
  • Pedro DÍEZ
  • Antonio HUERTA
چکیده

A new residual-type flux-free error estimator is presented. It computes upper and lower bounds of the error in energy norm with the ultimate goal of obtaining bounds for outputs of interest. The proposed approach precludes the main drawbacks of standard residual type estimators circumventing the need of flux-equilibration and resulting in a simple implementation that uses standard resources available in finite element codes. This is especially interesting for existing codes and 3D applications where the implementation of this technique is as simple as in 2D. Recall that on the contrary, the complexity of the flux-equilibration techniques increases drastically in the 3D case. Bounds for the energy norm of the error are used to produce upper and lower bounds of linear functional outputs, representing quantities of engineering interest. This new flux-free error estimator improves the effectivity of previous approaches (better accuracy in every test) and it can be used in the mechanical case for linear elements. The proposed approach demonstrates its efficiency in numerical tests producing sharp bounds of the reference error both for the energy and the quantities of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates

The paper introduces a methodology to compute strict upper and lower bounds for linear-functional outputs of the exact solutions of the advection-reaction-diffusion equation. The proposed approach is an alternative to the standard residual type estimators (hybrid-flux), circumventing the need of flux-equilibration following a fluxfree error estimation strategy. The presented estimator provides ...

متن کامل

Error Estimation and Adaptivity for Nonlinear Fe Analysis

An adaptive strategy for nonlinear finite-element analysis, based on the combination of error estimation and h-remeshing, is presented. Its two main ingredients are a residual-type error estimator and an unstructured quadrilateral mesh generator. The error estimator is based on simple local computations over the elements and the so-called patches. In contrast to other residual estimators, no fl...

متن کامل

Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods

A cell conservative flux recovery technique is developed here for vertexcentered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant free a posteriori error estimator which is proven to be reliable and efficient. Some numerical tests ...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Strict Error Bounds for Linear Solid Mechanics Problems using a Subdomain-Based Flux-Free Method

We discuss, in this paper, a flux-free method for the computation of strict upper bounds of the energy norm of the error in a Finite Element (FE) computation. The bounds are strict in the sense that they refer to the difference between the displacement computed on the FE mesh and the exact displacement, solution of the continuous equations, rather than to the difference between the displacement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005